A point P in the plane of triangle $A B C$

https://www.linkedin.com/groups/8313943/8313943-6384052086056849412
Find a point P in the plane of a given triangle $A B C$, such that $|A P|^{2} / b^{2}+|B P|^{2} / c^{2}+|C P|^{2} / a^{2}$ is minimal,
where $a=B C, b=C A$ and $c=A B$.

Solution by Arkady Alt, San Jose, California, USA.

Let $\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{c}$ be some vectors which represent points P, A, B, C on the plane, respectively.
Then $a=\|\mathbf{b}-\mathbf{c}\|, b=\|\mathbf{c}-\mathbf{a}\|, c=\|\mathbf{a}-\mathbf{b}\|$ and our problem is:
Find a vector \mathbf{x} which minimize $F(\mathbf{x}):=\frac{1}{b^{2}}\|\mathbf{x}-\mathbf{a}\|^{2}+\frac{1}{c^{2}}\|\mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{a^{2}}\|\mathbf{x}-\mathbf{c}\|^{2}$.
This problem is particular case of more general problem:
Find a vector \mathbf{x} which minimize $F(\mathbf{x}):=p\|\mathbf{x}-\mathbf{a}\|^{2}+q\|\mathbf{x}-\mathbf{b}\|^{2}+r\|\mathbf{x}-\mathbf{c}\|^{2}$ for any given positive weights p, q, r.
Asssming for convenience $p+q+r=1$ and denoting $\mathbf{m}:=p \mathbf{a}+q \mathbf{b}+r \mathbf{c}$ we obtain
$F(\mathbf{x})=p((\mathbf{x}-\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a}))+q((\mathbf{x}-\mathbf{b}) \cdot(\mathbf{x}-\mathbf{b}))+r((\mathbf{x}-\mathbf{c}) \cdot(\mathbf{x}-\mathbf{c}))=$ $(\mathbf{x} \cdot \mathbf{x})-2(\mathbf{m} \cdot \mathbf{x})+p(\mathbf{a} \cdot \mathbf{a})+q(\mathbf{b} \cdot \mathbf{b})+r(\mathbf{c} \cdot \mathbf{c})=$
$(\mathbf{x}-\mathbf{m}) \cdot(\mathbf{x}-\mathbf{m})+p(\mathbf{a} \cdot \mathbf{a})+q(\mathbf{b} \cdot \mathbf{b})+r(\mathbf{c} \cdot \mathbf{c})-(\mathbf{m} \cdot \mathbf{m}) \geq \sum p(\mathbf{a} \cdot \mathbf{a})-(\mathbf{m} \cdot \mathbf{m})=$
$\sum p(\mathbf{a} \cdot \mathbf{a})-\sum p^{2}(\mathbf{a} \cdot \mathbf{a})-\sum p q(\mathbf{a} \cdot \mathbf{b})-\sum p r(\mathbf{a} \cdot \mathbf{c})=\sum p q(\mathbf{a} \cdot \mathbf{a})+\sum p r(\mathbf{a} \cdot \mathbf{a})-$
$\sum p q(\mathbf{a} \cdot \mathbf{b})-\sum p r(\mathbf{a} \cdot \mathbf{c})=\sum p q(\mathbf{a} \cdot \mathbf{a})+\sum q p(\mathbf{b} \cdot \mathbf{b})-2 \sum p q(\mathbf{a} \cdot \mathbf{b})=$ $\sum p q((\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}))=p q c^{2}+q r a^{2}+r p b^{2}=F(\mathbf{m})$.
Thus, $\min F(\mathbf{x})=F(\mathbf{m})=p q c^{2}+q r a^{2}+r p b^{2}$ and for weights without normalization $\min F(\mathbf{x})=F\left(\frac{p \mathbf{a}+q \mathbf{b}+r \mathbf{c}}{p+q+r}\right)=\frac{p q c^{2}+q r a^{2}+r p b^{2}}{p+q+r}$.
In particular for $(p, q, r)=\left(\frac{1}{b^{2}}, \frac{1}{c^{2}}, \frac{1}{a^{2}}\right)$ we obtain $p q c^{2}+q r a^{2}+r p b^{2}=$
$\frac{1}{b^{2} c^{2}} \cdot c^{2}+\frac{1}{c^{2} a^{2}} \cdot a^{2}+\frac{1}{a^{2} b^{2}} \cdot b^{2}=\frac{1}{b^{2}}+\frac{1}{a^{2}}+\frac{1}{c^{2}}$. Thus, $\min F(\mathbf{x})=1$
and attained in unique point P represnted by vector $\mathbf{x}_{*}=\frac{b^{-2} \mathbf{a}+c^{-2} \mathbf{b}+a^{-2} \mathbf{c}}{b^{-2}+c^{-2}+a^{-2}}=$ $\frac{c^{2} a^{2} \mathbf{a}+a^{2} b^{2} \mathbf{b}+b^{2} c^{2} \mathbf{c}}{c^{2} a^{2}+a^{2} b^{2}+b^{2} c^{2}}$, that is P is detrmined by barycentric coordinates $c^{2} a^{2} \div a^{2} b^{2} \div b^{2} c^{2}$
with respect to triangle $A B C$.

